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Abstract

We summarize recent statistical analyses that link agricultural yields to weather fluctuations. Similar to other sectors, high temperatures play a
crucial role in predicting outcomes. Climate change is predicted to significantly increase high temperatures and thereby reduce yields. How good
are such models at predicting future outcomes? We show that a statistical model estimated using historic US data on corn and soybean yields from
1950 to 2011 is very capable of predicting aggregate US yields for the years 2012-2015, where 2012 was much hotter than normal and is expected
to become the new normal under climate change. We conclude by discussing recent studies on the implication of predicted yield declines with a

special focus on adaptation and commodity prices.
JEL classifications: Q10, Q54
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It was only 10,000 years ago, a small span in our history,
that humans transitioned from hunter-gatherers to settle and
become farmers (Balter 2013). Agrarian settlements enabled
a more reliable and abundant food supply and employed the
predominant share of the labor force in agriculture for many
centuries to come. The start of the industrial revolution led to
a shift of labor away from agriculture, but it was not until the
21st century that a larger fraction of the global population be-
gan living in urban areas rather than rural areas (United Nations
Population Fund 2007). Consequently, throughout almost all
of human history, weather has played a crucial role in shap-
ing livelihoods given its importance in agricultural production.
Negative weather shocks and long-run climatic variability, such
as the Little Ice Age, have had significant effects on civiliza-
tional upheaval (Buintgen et al., 2011) and depopulation (Zhang
et al., 2007), especially in subsistence economies. More re-
cently, this weather-food production channel has been applied
to contemporary episodes of unrest such as in Syria (Kelley
et al., 2015), and to civil conflict more broadly (Burke et al.,
2009; Hsiang et al., 2011).

Investments in input technology associated with the Green
Revolution vastly improved food security around the globe,
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leading to inflation-adjusted commodity prices trending down-
ward until recently. These recent technological advancements
have not insulated agriculture from negative effects. To the con-
trary, several studies find that modern varieties achieve higher
average yields at the cost of larger sensitivity to fluctuations in
high temperatures (Tack et al., 2015). Climate change poses the
threat of reversing gains in average yields while also increasing
the volatility of global food production. Such concerns have
prompted agronomists and statistical researchers to simulate
the effects of climate change on agricultural yields.

The Agricultural Model Intercomparison and Improvement
Project (AgMIP), an international community of crop and agri-
cultural trade modelers, is one such effort. Similar to the cli-
mate modeling community’s Coupled Model Intercomparison
Project (CMIP), models are evaluated by using common in-
puts (e.g., reference scenarios). The multimodel mean has been
found to perform better than any individual model (Asseng etal.,
2015). At the same time, reduced-form statistical analyses use
the fact that weather anomalies are random and plausibly exoge-
nous and hence ideal right-hand side variables in a regression
equation. Such analyses have uncovered the very potent effect
of high temperature exposure, not just in agriculture (Schlenker
and Roberts 2009), but also for energy use (Miller et al., 2008),
mortality rates (Deschénes and Greenstone 2011), labor supply
(Graff Zivin and Neidell 2014), and economic growth (Burke
et al., 2015).
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In this article, we synthesize the current state of climate
impact analyses of agricultural yields and describe the various
tools being used to generate forecasts of how agriculture may be
affected by global climate change. We place special emphasis
on results derived from statistical methods for the United States,
which produces 23% of the global calories consumed directly
or indirectly (feedstock) from the four staple commodities corn,
wheat, rice, and soybeans. These four staples account for 75%
of the calories humans consume and hence any effect on US
production has global repercussions given its market size. While
it is a daunting task to simulate outcomes far into the future,
we show that a statistical model for the United States that was
estimated using historic data from 1950 to 2011 is very capable
of predicting future outcomes in 2012-2015, including the heat
wave of 2012 that is predicted to become the new norm under
climate change.

1. Estimating crop yield responses

Agronomists have studied how various factors impact crop
yields for a long time. A majority of agronomic crop models em-
phasize the detrimental effects of drought conditions (Passioura
1994). Some models allow temperature exposure exceeding a
crop’s cycle-specific thresholds to exert large, negative effects
on yields (Paulsen 1994). Many of these factors are correlated,
and it is difficult to identify them in isolation. Both tempera-
ture and precipitation influence the water balance of a plant.
Drought conditions imply a lack of precipitation relative to
the given temperature. Heat reduces soil moisture through two
channels: first, on the supply side, evaporation directly dries
out the soil and transpiration depletes soil moisture through
root water uptake that gets lost by the plant. Second, on the
demand side, higher temperatures increase the water demand
of a plant to keep up photosynthesis (Lobell et al., 2013). Pre-
cipitation, on the other hand, only affects the supply of water
by replenishing soil moisture.

Agronomic models possess several strengths: they allow for
more complex interactions between various inputs (soil quality,
nutrients, water availability, temperature, and precipitation) un-
der controlled growing conditions. If the goal of the analysis is
to predict yields in a particular plot, these intricate interactions
are of great importance. On the other hand, the number of pa-
rameters is often so large that they cannot be jointly estimated
and instead need to be calibrated. Moreover, real-world field
conditions might differ from experimental setups and hence be
constrained by other inputs. Passioura (1994) mentions that a
“difficulty is that much of the literature deals with short-term
responses to water status that may be transient in that they are
eventually overridden by other changes [ ...].”

The advantage of statistical models, on the other hand, is
that they often offer more degrees of freedom as they can pool
observations from several locations over various years, which
allows them to disentangle factors that are closely correlated.
While statistical analysis includes fewer variables than crop

models, they rely on the fact that weather anomalies are ran-
dom and hence should be uncorrelated to other factors. The
omission of other factors therefore will not bias the coeffi-
cient on the variable of interest. This implies that statistical
models are better at predicting yields over larger geographic
areas where other factors average out rather than an individual
field. For example, Lobell and Burke (2010) compare statis-
tical models to agronomic models of CERES-Maize and find
the former outperform especially at spatial scales of higher ag-
gregation. When examining the effects of climate change on
food security and food prices, a focus on aggregate outcomes
is sufficient. The next four subsections will introduce results
from statistical models that show that degree days are good
explanatory variables, illustrate how degree days can be cal-
culated from daily minimum and maximum temperature, dis-
cuss limitations of statistical models, and assess their predictive
power.

Both agronomic models and statistical models use data from
various geographic scales, ranging from field trials to more
aggregate self-reported county or country averages. The ma-
jority of agronomic studies are calibrated at “representative”
sites around the world and then extrapolated to other compara-
ble areas. The advantage of using field trials is that they often
have more detailed data available for a myriad of outcomes.
Statistical analysis, on the other hand, generally use more ag-
gregate data, which reflect real-world conditions that might be
very different from controlled growing conditions in labs or
trail sites. There are some statistical analysis that use data from
field trials (Lobell et al., 2011; Tack et al., 2015; Welch et al.,
2010).

1.1. Evidence from statistical models

There is a growing literature of statistical studies linking agri-
cultural outcomes to weather anomalies.! Panel models employ-
ing spatial fixed effects rely on variation in anomalies, while
cross-sectional studies utilize variation in climate. From a sta-
tistical perspective, panel variation benefits from exogenous
and random (except for some large-scale phenomena that make
weather predictable, like El Nifio) weather anomalies. A loca-
tion’s climatology, on the other hand, is correlated with other
factors that also affect agricultural output, such as soil quality.
If these other confounders are not correctly accounted for, a
weather variable of interest would covary with the error term,
resulting in a biased estimate. For a more detailed discussion of
the advantages and challenges of using weather anomalies, see
Schlenker (2016).

Statistical studies rely on historical data to estimate a re-
sponse function and use it to predict outcomes under both cur-
rent and future weather. Recent panel studies have shown the
importance of weather extremes. Schlenker and Roberts (2009)

! Anomalies are computed as the deviation of an observed temperature from
that location’s climatology, which is typically constructed as the average over
a 30 year or longer period.
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use data from 1950 to 2005 to estimate a fixed effects panel
model of county-level, maize, soybean, and cotton yields data
in the eastern United States. The optimal temperature is around
29°C for corn, 30°C for soybeans, and 32°C for cotton. For
all three crops, the relationship is highly asymmetric: being
below or above the optimal temperature is suboptimal in an
approximately linear fashion, but being above the threshold is
roughly 10 times as bad as being the same amount below the
threshold. In other words, the slope of the decline above the
optimum is roughly 10 times as steep as the slope of the in-
cline below it. This piecewise linear response function is well
captured by degree days, which sum up how much tempera-
tures exceed a threshold for a chosen period of time.?> Climate
change is predicted to reduce yields as the gains from shift-
ing below-optimal temperatures toward optimal temperatures
is more than offset by the losses from shifting optimal temper-
atures to warmer-than-optimal temperatures. The dominating
effect of temperatures above the threshold has been confirmed
in other agricultural studies and other sectors as mentioned in
the previous section.

Similar relationships are observed in other parts of the world.
Lobell et al. (2011) analyze field-level data from sub-Saharan
African maize trials conducted by the International Wheat and
Maize Improvement Center (CIMMYT). Measuring tempera-
ture exposure using a cumulated degree day approach, their
results support those from Schlenker and Roberts (2009) that
exposure exceeding 30°C harms maize yields. They conclude
that cooler areas may benefit from additional warming, but that
much of the study region already experiences temperatures in
excess of the upper threshold. Drought conditions further am-
plify damages.

A few technical details of recent panel studies are worth re-
peating. First, previous studies have sometimes used quadratic
specifications to model nonlinearities. This is very restric-
tive as a quadratic function assumes symmetry around the
optimum, yet the relationship might be highly asymmetric as
outlined above. It is hence preferable to use binned indicator
variables for various interval ranges of the weather outcomes,
or restricted cubic splines to first examine whether the response
function can be approximated by a piecewise linear function
underlying the concept of degree days (Schlenker 2016).

Second, nonlinearities can only be detected if the weather
data are fine-scaled enough in both time and space.
Section 1.4 illustrates how averaging weather variables over
time and space reduces the predictive power of the model.
For example, Schlenker and Roberts (2009) construct very fine
(2.5 miles x 2.5 miles) gridded daily temperature and precipita-
tion data. Since yield outcomes are reported by county, weather
data are aggregated to the county-level using a satellite scan
of the cropland area. However, the sequence in which aggre-

2 For example, a sustained temperature of 32°C for 24 hours would give
3 degree days above a 29°C threshold. The total over a growing season is
simply the sum from repeating this approach for each day of the growing
season.

gation and temperature transformation is performed matters.
Initially deriving the nonlinear temperature transformation (de-
scribed in Section 1.2) for each grid pixel and then averaging
over the county gives different results compared to an approach
that applies the nonlinear temperature transformation to the
county-averaged weather outcome. If spatially detailed data are
available, it should be transformed and then averaged, so as not
to smooth over the true observed extremes. A simple example
might illustrate this point: consider a county of two pixels each
experiencing temperature anomalies of equal magnitude around
the threshold but of opposite signs. Taking the spatial average
and then performing the nonlinear transformation would lead
to the false conclusion that the entire county experienced no
temperatures above the threshold, since the average does not
exceed the threshold.

A similar logic applies to temporal averaging; employing a
sinusoidal interpolation between the daily minimum and maxi-
mum temperature (Snyder 1985) gives a different outcome for
the day than applying the transformation to the daily average.
This is especially important for extremes, both hot and cold,
as the daily average often does not pass thresholds that the
daily minimum or maximum do pass. For example, a nonlin-
ear data generating process with threshold behavior initiated
at 30°C will generate different outcomes across the following
two scenarios: one with 12 hours of 33°C exposure followed by
12 hours of 23°C, and an alternative of constant 28°C for 24
hours. Both scenarios face a daily average temperature of 28°C,
but only the former would obtain a positive degree days measure
above 30°C.

Data analyses which smooth out extreme exposures by either
spatial or temporal aggregation will underperform in estimating
the response function. This finding is confirmed in Tack et al.
(2015) who use detailed data on Kansas wheat trials and pair
it with daily weather station data; both extreme cold (freezes)
as well as hot temperatures negatively impact yields. The latter
effect dominates and wheat yields are predicted to decline under
climate change. The authors show that a model that captures
the within-day distribution of temperatures between the daily
minimum and maximum does better in terms of R? and out-of-
sample forecasts than a model using the daily average.

Previous analyses assumed that the effects of temperatures
are additively separable throughout the growing season. Welch
et al. (2010) modify this approach when estimating farm-level
rice yields data generated from sites in six rice-producing Asian
countries. They divide the rice season into vegetative, reproduc-
tive, and ripening phases and estimate significantly detrimen-
tal effects from higher minimum temperatures in both vegeta-
tive and ripening phases, while increases in vegetative phase
maximum temperature are significantly beneficial. As an al-
ternative to the cumulated degree day or degree-bin exposure
time methods, the authors explicitly include daily minimum
and maximum temperatures for the growing phases as separate
variables. This allows for coefficients of different magnitudes
or signs. They also consider diminishing solar radiation lev-
els which have been attributed to rising aerosol concentrations
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Notes: Degree days are the integral (gray area) between the temperature
distribution within a day and the bound, b, above which they are measured.
The daily distribution of temperatures are approximated by a sinusoidal curve
between the daily minimum and maximum temperature. Temperatures exceed
the threshold between times #1 and #,, which are formally derived in the online
appendix.

Fig. 1. Deriving degree days from daily minimum and maximum temperature.

and atmospheric brown clouds (Crutzen and Ramanathan 2003;
Ramanathan and Feng 2009). Aerosol concentrations are ex-
pected to decline as regional emissions standards tighten and
economies transition from bio-based fuels and coal to cleaner
energy systems. As a result, the negative effects of reduced
radiation on the ripening phase of rice may be reversed. How-
ever, because of radiative backscattering, atmospheric aerosols
are likely masking warming trends that would be larger in the
absence of aerosols, suggesting that an aerosol-greenhouse gas
joint management strategy must be devised to avoid rapid warm-
ing resulting from a rapid aerosol emissions reduction.

1.2. Construction of degree days

Some weather stations report hourly observations and hence
have data on the within-day distribution. Even if only the daily
minimum and maximum are known, a researcher can approxi-
mate the within-day distribution by a sinusoidal distribution, as
done by Schlenker and Roberts (2009) and Tack et al. (2015),
both following Snyder (1985). Degree days above a threshold
(sometimes called cooling degree days in the energy litera-
ture), are simply the area under the temperature curve above
the threshold throughout the day and as shown in Fig. 1. The
mathematical derivation of degree days is given in the online ap-
pendix for both cooling and heating degree days for an arbitrary

bound b.> Using 7 = acos(%), we get
max — Lmin

3 Tack et al. (2015) further refine this approach by linking a day’s maximum
temperature with the next day’s minimum temperature.

cooling degree days
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These piecewise linear temperature variables are shown to
perform exceptionally well in predicting agricultural yields in
Section 1.4.

1.3. Limitations

There are several limitations of the standard panel regression
method. First, the effects of carbon fertilization cannot be in-
cluded because nominal spatial heterogeneity implies that any
observed changes in CO, concentrations over the study period
are absorbed by time trends or time fixed effects. The predicted
effects of a change in climate conditions using a statistical panel
model does not include CO, fertilization effects, which differ
between Cs (e.g., soybeans, rice, and wheat) and Cy crops (e.g.,
corn). The former class of crops has larger yield gains from
increases in CO,.

While panel data use fixed effects to capture time-invariant
omitted variables, there might still be time-varying omitted vari-
ables. Sheehy et al. (2006) emphasize the problems of omitted
variable bias, noting strong colinearity between temperature
and solar radiation, which biases temperature estimates if the
latter is omitted. In case the correlation between temperature
and solar radiation remains unchanged in the future, the co-
efficient would still give unbiased climate change impacts as
the temperature coefficient simply picks up the joint effect of
both changes in temperature and solar radiation. However, most
climate models predict increases in temperature, but not nec-
essarily of solar radiation, which depends on local pollutants
and how much solar radiation they absorb. In such a case, a
temperature coefficient that includes the beneficial effects of
solar radiation will not give the correct climate impact as future
changes in temperature and solar radiation diverge from historic
patterns used to identify the model parameters.

Surface temperature maintains a high degree of spa-
tial covariance, whereas precipitation is significantly more
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heterogeneous in space. The cross-validation exercise of
Schlenker and Roberts (2009), where data are interpolated to
the location of a weather station and compared to the actual
outcome, finds that spatial interpolation of temperature is much
better than precipitation interpolation. This implies that gridded
precipitation products by their nature consist of a higher noise
ratio than temperature products. This is especially troublesome
in a panel setup that relies on anomalies. While most datasets
agree on which locations are wetter on average, there is much
less agreement on whether a particular year was above or below
average (Auffhammer et al., 2013). This could result in atten-
uation bias on the precipitation variables. Burke and Emerick
(2013) find that the trend in yield growth is more sensitive to
the observed precipitation trends than the coefficient that is ob-
served in a panel setting. This might either indicate attenuation
bias in the panel setting or the fact that applying water is feasi-
ble to annual weather shocks, but not sustainable in the longer
term.

While degree days based on fine-scaled weather data has per-
formed well in the United States, many developing countries
have a much coarser station network that requires a lot of inter-
polation to fill in the gaps. In such a case, researchers must use
either reanalysis products or more aggregate temperature data
from spatial interpolation routines, i.e., monthly instead of daily
data.* Schlenker and Lobell (2010) analyze yields for five key
crops in sub-Saharan Africa and run four model specifications
including both average growing season temperature as well as
degree days, yet find that all approaches give rather comparable
results. While their results vindicate the utility of even crude
temperature data, weather data quality issues prohibit more ex-
tensive models which could plausibly provide policymakers
richer guidance on mitigating climate losses.

Finally, some authors have criticized statistical studies for
interpolating past behavior into the future, which makes the
implicit assumption that technology is time-invariant. However,
Burke and Emerick (2013) find that the trend in yields shows the
same sensitivity to trends in hot degree days to what is observed
in a panel setup that relies on weather shocks, i.e., the long-run
response is comparable to the short-run response. Still, whether
modern crops are just as sensitive to hot degree days as what
was observed in historical data is examined in more detail in
the next subsection.

1.4. Recent US yield forecasts

Previous studies have found hot degree days to be the most
significant predictor of annual fluctuations in corn and soybean
yields. This section tests whether models estimated solely with
previous data (1950-2011) have predictive power for the past
four years (2012-2015). The weather data were constructed in
the same way as in Schlenker and Roberts (2009). We first de-

4 Weather data using statistical interpolation techniques are contrasted with
reanalysis products that combine interpolation with physical laws on the preser-
vation on mass and energy in more detail in Auffhammer et al. (2013).

rive the daily minimum and maximum temperature for each 2.5
x 2.5 mile PRISM grid cell, construct the nonlinear tempera-
ture transformation for each grid cell and day, and then sum the
data over all days of the growing season and average it over the
cropland area in each grid cell to obtain county aggregates. This
is the basis for the county-level analysis. We pair it with annual
county-level yields as reported by the National Agricultural
Statistics Service (NASS) for the eastern United States, specif-
ically all counties east of 100° longitude except Florida. The
panel specification is the same as the piecewise-linear function
(red lines) in fig. 1 of Schlenker and Roberts (2009).

Since we are estimating a linear model, we should be able to
aggregate both dependent and independent variables to higher
spatial aggregation levels, i.e., annual-level yield data® by
weighting the county data by predicted production, which is
simply the actual growing area times predicted yields according
to state-specific time trends.’” The annual aggregate has only one
observation per year, while the county level data has 2,276 ob-
servations per year for corn and 2,079 for soybeans. To highlight
the importance of first conducting the nonlinear transformation
and the summing over space/averaging over time, we also pro-
duce forecasts that first aggregate the weather data across space
or time and then apply the nonlinear transformation.

Figure 2 displays the cumulative distribution of aggregate
exposure to hot degree days (degree days above 29°C or 84°F)
in the left graph. It is the weighted average of the county-level
data, where the weights are predicted production along a trend
as described in the previous paragraph. It shows the combined
exposure that the growing area has experienced since April 1
of each year. The black solid line shows the historic average
for the years 1950-2011, while the dashed gray lines show
the distribution for individual years in 1950-2011. The colored
lines show the results for the last four years 2012-2015. The
blue line depicts 2012, which had a heat wave in July. As a
consequence, the cumulative exposure to hot degree days rises
rapidly in July when temperatures exceeded 29°C frequently.
There was less heat above the threshold in August 2012 and
the line tapers off. The year 1988 had the highest season total
number of hot degree days as shown by the gray line eclipsing
the blue line by mid-August.

The right graph of Fig. 2 shows the cumulative distribution of
season-total precipitation, where the color-coding of the lines
is equivalent to the left graph. Note that 2012 was not only
one of the hottest years on record in terms of hot degree days,

5 The only difference is that we cluster errors by state instead of using Conley’s
routine on spatial correlation. This has no effect on the point estimate but
might give different standard errors. Previous research has shown that both
give comparable standard errors, and clustering is much more computationally
efficient.

% To keep the model consistent with Schlenker and Roberts (2009), we only
use counties east of the 100° meridian excluding Florida in the analysis. The
aggregate is the sum of those counties, which account for the dominant share
of US production.

7 We chose state-specific restricted cubic spline with the knots at 1960, 1980,
and 2000. This forces linear trends above 2000 into the future.
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Fig. 2. Cumulative exposure to degree days above 29°C and precipitation.

but also one of the driest as the blue line comes in as the
second-lowest by the end of September—it was second to 1988,
which was the driest year on record. Recall that degree days
above 29°C only measure temperatures above 29°C. A large
number of hot degree days does not necessarily imply a large
average temperature, since temperature fluctuations below 29°C
are disregarded.

One can also easily see why 2014 and 2015 produced very
strong yields. There was a limited amount of hot degree days
and total rainfall was higher than usual, as shown by the lines
in green and pink. The negative correlation between hot de-
gree days and precipitation does not always hold, especially for
county-level values: some counties in the very hot year 2012
experienced above average rainfall. In general, both for his-
toric time series and for future predictions of climate change,
aggregate impacts mask great heterogeneity among counties.

How well do these simple variables capture year-to-year yield
variation? Figure 3 shows the results of a regression of log corn
yields (left) and log soybean yields (right) on the four weather
variables of Schlenker and Roberts (2009): moderate as well
as hot degree days and a quadratic in season-total precipita-
tion.® For corn, moderate degree days are between 10°C and
29°C, while hot degree days are above 29°C.° We also include
quadratic time trends.'? These four weather variable captures
a very large portion of the year-to-year fluctuations in yields.

8 The regression in Schlenker and Roberts (2009) use monthly precipitation
totals from PRISM to construct season-total precipitation measures. These
numbers were not yet available for 2015 at the time this article was written.
We hence use the sum of the daily precipitation measure of the interpolation
routine described in the article.

9 For soybeans, the bounds are 10-30°C and above 30°C.

10 The county-level and state-level regressions have quadratic time trends that
are allowed to differ by state.

The largest portion is due to the measure of hot degree days.
The model predicts well out-of-sample for the years 2012—
2015. While some industry representatives have suggested that
modern crops are much better at withstanding heat than historic
varieties used in estimating the response surface, the model pre-
diction for 2012 does not seem to overpredict the effects of the
observed heat wave for corn, and only slightly so for soybeans.

Table 1 shows predicted aggregate corn yields for the years
2012-2015, while Table 2 shows the results for soybeans. The
model is estimated using data for 1950-2011, analogous to the
specifications of Fig. 3. Column (1) provides the reported aver-
age yield for the counties in the sample, i.e., the eastern United
States.!! Columns (2a)—(3d) give the prediction errors in percent
from various models, while rows vary the year of the out-of-
sample forecast. Standard errors on the predictions are given
in parentheses. Columns (a) do not use any weather variable,
i.e., they simply predict yields along the trend. Columns (b)
and (c) use one explanatory variable: average temperature
over the growing season and hot degree days, respectively.
Columns (d) use the four weather variables of Schlenker and
Roberts (2009). Columns (2a)—(2d) run the regression and out-
of-sample prediction at the county-level. County-level logyield
forecasts are translated into aggregate forecasts by multiply-
ing predicted yields'? times the observed growing area. We
then sum predicted production and area over all counties and
derive predicted yields as the ratio of the two. Aggregate pre-
diction error is simply the percent difference from the actually
observed yield for the year. Standard errors are obtained from

Il Average yields are obtained by summing all production and harvest area
for counties east of the 100° meridian except Florida and then taking the ratio.

2
12 predicted yields are eloeield) » ¢T to account for the convexity of the
exponential function.
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Fig. 3. Statistical models predicting log corn and soybean yields 1950-2015.

Table 1
Out-of-sample forecasts for corn yields 2012-2015

Prediction error (%) under various models

Actual yield County-level Aggregate eastern US
(e)) (2a) (2b) (20) (2d) (3a) (3b) (o) (3d)
Yield in 2012 123.16 27.19 14.89 4.38 3.62 23.41 18.28 4.29 1.16
(1.41) (0.60) (1.91) (3.84) (3.73) (4.38)
Yield in 2013 161.14 —-1.91 3.13 —1.16 -1.34 —5.18 —2.98 -3.92 —1.75
(4.19) (1.32) (1.27) (3.08) (2.46) (2.56)
Yield in 2014 173.63 —7.85 —1.66 —-0.07 —0.93 —11.58 —8.84 —3.66 -3.11
(4.32) (2.13) (1.87) (3.26) (3.28) (2.85)
Yield in 2015 171.87 —5.35 —7.20 —1.41 0.19 —10.30 —10.57 —5.01 —1.83
(2.71) (1.77) (1.60) (2.98) (3.14) (3.03)
RMSE 14.43 8.46 2.37 1.99 14.28 11.54 4.25 2.09
Weather variables no avg dday four no avg dday four

Notes: Table reports actual yields (column 1) as well as out-of sample predictions errors under various models in columns (2a)—(3d) in percent. Standard errors on
the prediction errors are given in brackets and were obtained from 1,000 bootstrap runs resampled from the joint distribution of all parameters. Columns (a) include
no weather variable and the model hence simply predicts yields to equal the trend. Columns (b) and (c) only include one weather variable: average temperature
over the season (April-September) in columns (b) and season-total degree days above 29°C in columns (c). Columns (d) use four weather variables: season-total
(April-September) degree days 10-29°C, degree days above 29°C, and a quadratic in precipitation. The statistical models also differ by spatial aggregation.
Columns (2) use county-level yields with a quadratic time trend by state. Columns (3) use aggregate data by year, i.e., 62 observations, with a quadratic time trend.
All weather variables are first derived for a 2.5 x 2.5 mile grid and then aggregated to the county or annual aggregate level. The models are estimated using the years
1950-2011 and predicted out-of sample for 2012-2015.

1,000 bootstrap simulations from the regression results where disregards all temperature fluctuations below it, give a much
we repeatedly resample all parameters. smaller prediction error of 2.4%. Hot temperatures are a much
Column (2a) gives on average a forecast error of 14.4% across better predictor of yield fluctuations than average temperatures.
years for corn as shown in the second to last row of the table. The model using all four weather variables reduces the predic-
Recall that the specification in (2a) simply predicts yields to tion error slightly further to 2.0%.
equal the trend. This forecast error is reduced by not even half Columns (3a) and (3b) replicate the analysis except that both
to 8.5% for a model using average temperature in column (2b). yields and weather are first aggregated to the annual level. The
On the other hand, the model using only hot degree days in col- model is no longer estimated using 115,205 observations of

umn (2c), which only measure temperatures above 29°C and the panel, but 62 annual observations. The weather data are
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Table 2
Out-of-sample forecasts for soybean yields 2012-2015

Prediction error (%) under various models

Actual yield County-level Aggregate eastern US
)] (2a) (2b) (20) (2d) (3a) (3b) (30 (3d)
Yield in 2012 40.20 9.28 3.23 —5.80 —7.96 10.92 8.17 1.01 —1.58
(0.76) (0.47) (1.23) (2.94) (2.90) (2.63)
Yield in 2013 44.40 0.22 3.73 2.68 1.19 1.73 1.89 2.15 5.12
(3.63) (0.52) (0.89) (2.53) (2.52) (2.12)
Yield in 2014 48.02 —6.59 —2.61 0.47 —1.57 —4.73 —4.46 —1.81 0.52
(3.68) (0.81) (1.03) (2.56) (2.66) (2.11)
Yield in 2015 48.82 —6.52 —7.37 —3.26 —1.21 —5.07 —6.40 —4.25 0.53
(2.09) (0.59) (0.71) (2.68) (2.68) (2.39)
RMSE 6.56 4.62 3.60 4.14 6.53 5.73 2.60 2.70
Weather variables no avg dday four no avg dday four

Notes: Table reports actual yields (column 1) as well as out-of sample predictions errors under various models in columns (2a)—(3d) in percent. Standard errors on
the prediction errors are given in brackets and were obtained from 1,000 bootstrap runs resampled from the joint distribution of all parameters. Columns (a) include
no weather variable and the model hence simply predicts yields to equal the trend. Columns (b) and (c) only include one weather variable: average temperature
over the season (April-September) in columns (b) and season-total degree days above 30°C in columns (c). Columns (d) use four weather variables: season-total
(April-September) degree days 10-30°C, degree days above 30°C, and a quadratic in precipitation. The statistical models also differ by spatial aggregation.
Columns (2) use county-level yields with a quadratic time trend by state. Columns (3) use aggregate data by year, i.e., 62 observations, with a quadratic time trend.
All weather variables are first derived for a 2.5 x 2.5 mile grid and then aggregated to the county or annual aggregate level. The models are estimated using the
years 1950-2011 and predicted out-of sample for 2012-2015.

Table 3
Out-of-sample forecasts by aggregation level

Prediction error (%) under various temp. aggregation

Corn Soybeans
(1) (1b) ) (1d) (2a) (2b) (20) (2d)
Prediction error in 2012 1.70 —0.37 0.90 1.16 —6.84 —6.66 —3.03 —1.58
(4.69) (4.56) (4.44) (4.38) (2.66) (2.69) (2.83) (2.63)
Prediction error in 2013 4.44 -2.72 5.37 —1.75 5.85 2.93 7.34 5.12
(3.25) (3.08) 3.01) (2.56) (2.39) (2.30) (2.20) (2.12)
Prediction error in 2014 —4.17 —3.46 —3.68 —3.11 —-1.22 0.20 —0.17 0.52
(3.25) (3.28) (3.03) (2.85) (2.26) (2.26) (2.08) (2.11)
Prediction error in 2015 —1.40 —5.14 —0.68 —1.83 0.36 —0.49 0.17 0.53
(3.66) (3.38) (3.35) (3.03) (2.26) (2.33) (2.31) (2.39)
RMSE 3.24 3.39 3.30 2.09 4.54 3.65 3.97 2.70
Temperature average a/m area mon. grid a/m area mon. erid

Notes: Table reports sensitivity of the aggregate (eastern United States) analysis to how degree days are constructed from temperature variables. Columns (1a)—(1d)
use aggregate annual corn yields, while columns (2a)—(2d) use aggregate soybeans yields. Columns (1d) and (2d) are the same as column (3d) in Tables 1 and 2,
respectively. Columns (d) use daily data for each 2.5 mile x 2.5 mile grid to construct degree days before averaging them across space and time before deriving
degree days. Columns (c) average across time: they use average monthly minimum and maximum temperature instead of daily temperatures. Columns (b) average
temperature across space on each day. Finally, columns (a) are the coarsest specification that average temperature across space and each month. All specification also
include the same quadratic in season-total precipitation as well as quadratic time trend. The models are estimated for the years 1950-2011 (62 observations) and
predicted out-of sample for 2012-2015.

averaged using production weights.!* The results are roughly Table 2 replicates the same out-of-sample prediction exer-
comparable, with slightly higher average prediction errors un- cise for soybeans instead of corn. Models using hot degree days
der aggregate weather measures. Recall that we are first con- in columns (c) again outperform models using average tem-
ducting the nonlinear transformation before averaging the data. perature in columns (b), although the reduction in error is not
First aggregating the weather data and then taking the nonlin- as big as for corn. Including all four weather variables very
ear transformation increases the prediction error as shown in slightly increases the out-of-sample prediction error, but given
Table 3. the uncertainty with these predictions, they are not significantly
_— different at the 95% level from one another in all but one of the
13 Production weights are constructed by multiplying actual growing area eight comparisons.

times predicted yields using state-specific time trends, as described earlier.
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Table 3 examines the role of aggregation bias for non-
linear models, which gets amplified when weather data are
aggregated to the annual level. Columns (1d) and (2d) are the
same as columns (2d) in Tables 1 and 2, respectively, i.e., a
national-level model using four weather variables for corn and
soybeans where the nonlinear transformation is first conducted
for each day and grid cell and then aggregated to the annual
level by summing over all days and averaging over all grids.
Table 3 aggregates the weather data before taking the nonlinear
transformation, where the most aggregate data are in columns
(a) and the least aggregated are in columns (d). Sometimes only
monthly weather data are available. Columns (c) therefore first
average temperatures for each month for each grid cell before
conducting the nonlinear transformation for degree days and
then averaging them over all grid cells. By the same token,
some weather datasets report at a much coarser grid. Columns
(b) first average daily temperatures over grids in the eastern
United States before conducting the nonlinear transformation
for degree days and then summing over all days of the grow-
ing season. Columns (a), the model with the most aggregate
weather data, first average temperatures over all grids and all
days of a month before conducting the nonlinear transforma-
tion for degree days. For both corn and soybeans, conducting
the nonlinear transformation before averaging over space or
time (or both) in columns (d) gives the lowest prediction errors.
When nonlinearities are important, averaging over space and
time can dilute these nonlinearities. These should be conducted
on the smallest possible grid cell and time step.

In summary, a very simple statistical model with either just
one variable (measure of hot degree days over the growing
season) or four weather variables (moderate and hot degree days
plus a quadratic in total precipitation) give very good forecasts
for the last four years that were not used in the estimation of
the coefficients. This gives us some confidence that the model
is adequate to simulate the effects of climate change on crop
production. In the case of corn, the hot year 2012 was especially
well predicted.

2. Implication of yield declines

Are predicted yield declines form statistical panel regression
valid predictions of climate change? Below we discuss whether
adaptation might mitigate the predicted yield declines and what
effect they might have on commodity prices.

2.1. Adaptation in current growing areas

Can climate impact estimates for agriculture be reliably ex-
trapolated from controlled field or greenhouse experiment re-
sults alone, or statistical correlations based on past behavior
as outlined in the previous section? Agricultural practices are
dynamic and adjustable. Economic actors will adapt to evolv-
ing conditions and if current practices lose their optimality, new
practices will displace them. On the other hand, if new practices

are too costly, it might not be worthwhile to engage in them.
Extensive and intensive margins of adjustment will be available,
and the range of options available to farmers, though situation-
specific, include modifying the growing season or adjustments
in crop management activities like alteration of inputs, switch-
ing of crop varieties, or crop-switching.'* While statistical panel
analyses capture within-season adaptation to weather shocks,
i.e., change of some inputs like more use of irrigation water,
they do not incorporate responses to permanent shifts in climate
like crop switching.

Some insight into which practices may be feasible under a
changed climate can be learned from the practices of farm-
ers elsewhere who have been subject to warmer conditions in
the past. This forms the basis of the Ricardian approach (Ku-
rukulasuriya and Mendelsohn 2007; Mendelsohn et al., 1994),
which employs cross-sectional techniques using farmland value
in estimating warming effects on agriculture. While some such
changes will doubtless occur, impediments are likely to block
their complete emulation. For example, parts of the Western
United States have benefited from generous federal irrigation
program subsidies, which have capitalized into higher private
land values. It is unlikely such subsidy levels will be extended
in the future to areas not already possessing comparable irriga-
tion systems, and even if they were, they represent government
transfers and not benefits from a societal perspective. Since ir-
rigation is observed to mitigate the effects of hot degree days,
the damage function estimated from currently irrigated lands
cannot be simply mapped onto areas whose future climate will
approximate that of currently irrigated lands (Schlenker et al.,
2005). Many adaptation measures are costly, and it is important
to account for these costs or otherwise one will overestimate
the potential benefits of adaptation.

Butler and Huybers (2013) run county-level degree day mod-
els of maize yields in the eastern United States and uncover large
heterogeneity in hot degree days responsiveness (degree days
above 29°C during the growing season, as described in the pre-
vious section). They then regress the estimated response on the
location’s hot degree days climatology and find that warmer
counties are more heat-tolerant, suggesting that regional adap-
tation and use of appropriate cultivars have been effective at
reducing heat-induced losses. Under a uniform 2°C warming
scenario, continuation of observed adaptation would more than
halve aggregate yield losses. However, they overstate the po-
tential benefits of adaptation by assuming that it is costless;
farmers can obtain a lower sensitivity to hot degree days if
their area warms. If such technology was available at no cost,
risk-averse farmers should already be adopting them in current
climates as they reduce the variability of output at the current
climate while giving the same average yield. In nonlinear panel
models, the trade-off between a reduction in weather-sensitivity
and average yields can be identified. Schlenker et al. (2013) find
that for 2°C warming, the benefits of a lower sensitivity to hot

14 Smit and Skinner (2002) offer a comprehensive inventory of adaptation
options in agriculture.
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degree days are roughly compensated by lower average yields,
a result that is intuitively given by the envelope theorem, which
implies that the first-order effect is given by the direct effect on
yields and not the indirect effects of changes in management
practices.

How closely agents can stay at the boundary of their evolving
production frontiers will likely remain contested until stronger
shifts in climate are realized that would allow for stronger tests
of adaptation behavior. Some researchers posit that economic
actors will efficiently incorporate newly revealed information
about the changing climate into their decision-making, result-
ing in new optima minus adjustment costs. Such an assumption
would project climate change costs to be substantially lower
than forecasts based on extrapolation without adaptation (Kahn
2014). However, other work suggests that market distortions,
discounting, and information asymmetries are some factors that
may undermine optimization, or that changes in production
technology are simply too costly compared to the benefits. Re-
cent papers conclude that observed farmer adaptation thus far
has been limited (Burke and Emerick 2013; Taraz 2015).

Burke and Emerick (2013) adopt a “long differences” ap-
proach on eastern US agriculture, comparing mean values for
1978-1982 agricultural outcomes against those from 1998 to
2002 to generate 20-year differences. Over this period, portions
of the eastern United States experienced temperature increases
on par with those anticipated over coming decades, providing
some equivalence between analyzed and forecast temperature
changes. The recovered sensitivities to hot degree days are not
statistically different from the ones obtained in a panel regres-
sions, suggesting that adaptation to date has not been a huge
factor. While long time horizons allow for greater levels of cli-
matic variation, agents living in the beginning state and the end
state often lose comparability. This “frequency-identification
trade-off” (Hsiang and Burke 2014) implies that an increasing
number of confounds must be ruled out to isolate effects from
the weather/climate channel.

A complementary approach involves examining the efficacy
of individual actions. Taraz (2015) tests for changes in irriga-
tion investment and crop composition among Indian farmers
due to multiyear rainfall regimes, while Kala (2015) finds in
her sample of Indian farmers support for ambiguity aversion—
favoring planting decisions that insure against worst-outcome
monsoon onset realizations—and that these decisions are con-
sistent with a belief in climate stationarity. However, she does
not control for the colinearity of temperature and precipitation
and the role temperature plays in governing planting decisions
via evapotranspirative effects. Colmer (2015) identifies a la-
bor reallocation channel in Indian agriculture. In warmer and
less productive years, casual laborers shift from agriculture into
manufacturing. Migration is often the precursor to such occu-
pational shifts, and in its own right has been the outcome of
interest for numerous papers in development economics utiliz-
ing weather shocks as exogenous income shifters. Alternatively,
Henderson et al. (2015) investigate urbanization as a more per-
manent response to changes in agricultural productivity. Using

data from 29 sub-Saharan African countries, they estimate the
effect of moisture availability, a measure of precipitation and
potential evapotranspiration, on urban population and income.
They find long-run drying drives urbanization, but only in lo-
cations with an existing manufacturing base.

While empirical tests of adaptation benefit from focusing
on netted outcomes, translating such findings into policy re-
quires guidance on what may work and what does not. Irriga-
tion, for example, is considered one promising action for areas
not yet at full irrigation. Evidence from more than 40 years
of district-level yields data in India suggests that areas with
more irrigation experience significantly lower yield losses from
very high temperature, though numerous confounds including
wealth, ability, and soil quality cannot be ruled out as the true
causal factors. Well-designed field trials could shed light on
whether such investments do lower the sensitivity to hot tem-
peratures, but their external validity rests on how well the ex-
periments approximate irrigation and other institutional setups.
Furthermore, time horizons matter and decisions made to max-
imize short-run returns may be detrimental in the long run. For
example, India is currently facing crises in several areas where
agriculture has for years exploited highly subsidized energy to
overdraw groundwater. Some of these locations are now fac-
ing salinity issues, which have led to abandonment or low crop
productivity.

2.2. Shift in growing areas

While adapting to hot degree days in current growing areas
seems to come with some challenges, another possibility might
be to shift where crops are grown as climate change alters
the location of the areas that offer the optimal weather. The
possibility of shifts in growing areas in large parts depends
on soil quality. The standard panel analysis hence runs into
problems, as it is impossible to identify the spatial fixed effects
for areas that currently do not grow a commodity but might in
the future.

How climate change will shape the spatial pattern of agri-
cultural production is an ongoing area of research. Reilly
et al. (1994) and Rosenzweig and Parry (1994) represent
some of the earliest efforts to calculate trade’s role in re-
ducing losses. Reilly et al. (1994) use a partial equilibrium
model, exogenously prescribing yield effects from Rosenzweig
and Parry (1994). Reilly et al. (2003) ask whether climatic
change contributed to the observed westward shift in corn,
soy, and wheat production, but find that mainly nonclimatic
factors are responsible for it. More recently, Costinot et al.
(2014) develop a “field-level” international trade model em-
ploying FAO Global Agro-Ecological Zones (GAEZ) poten-
tial yields data, both under historic and projected climates, to
model each GAEZ grid cell’s potential productivity of 10 key
crops. This approach has the distinct advantage of using raster
data with continuous coverage, which does not suffer from
the problem of irregular subnational outcomes reporting that
plagues many countries. In a trade-integrated global economy
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under climate change, climate change effects on agriculture
would shave off about a quarter percentage point from global
GDP.

2.3. Impacts on prices

We have thus far focused on estimating the effects of tem-
perature on productivity per unit area (yields). From a welfare
perspective, this is not sufficient. For decades, the US govern-
ment has tried to limit supply to increase prices. A reduction in
yields (production) might even be beneficial to farmer profits if
it is offset by increasing prices, which in turn depend on how
inelastic demand is. By the same token, consumer surplus is a
function of commodity prices.

Real prices for commodity crops have been downward trend-
ing over the last century as production increases have outpaced
demand increases. There were some spikes, e.g., the 1970s, but
a general downward trend. After 2005, prices tripled due to
an outward shift in demand for biofuels as well as production
shortfalls. A better understanding of production and demand
trends is crucial to model future prices. Prices for agricultural
commodities move closely together for major producers that
have access to a seaport. Landlocked countries with high trans-
portation costs might be somewhat insulated from global move-
ments, but they generally account for a small share of global
supply and demand.

In addition to climate change, several demographic and eco-
nomic challenges compound the challenge of ensuring afford-
able, available food. Global population continues to rise. Large
segments of the world are enjoying greater purchasing power
and their tastes are shifting toward more resource-intensive
foods. It is unlikely that land intensification alone will be the
route for satisfying food demand growth. Conversion from
existing forests and peatlands to cultivable land would have
the perverse effect of releasing more CO, and lead to a pos-
itive feedback loop of additional warming and further yield
declines. '

If we treat climate change as a supply shock in existing areas,
the split between induced additional supply and reductions in
demand will be determined by the ratio of the demand and
supply elasticities. A correct estimation of these elasticities is
hence crucial, although empirically very challenging. Adopting
a standard OLS approach will not yield consistent estimates of
supply elasticities because producers endogenously determine
planting area. Consider the traditional estimation setup that
regresses supply, measured in aggregate calories produced in
a year, on that crop’s futures price. If farmers are aware of
some crop-specific threat, for example a pest outbreak, they
will cut back on the land area planted with that crop and switch
to another crop. While demand has not changed, output has
dropped, leading to higher futures prices. The outcome is a price
increase in response to an output reduction—a movement along

15 Lambin and Meyfroidt (2011) recount examples of countries which in-
creased food production without contributing to deforestation.

the demand curve. The classical regression setup would capture
itas a supply response, implying a negative, or downward biased
supply elasticity toward zero.

A unique feature of most commodity crops is that they are
storable and storage can smooth production across periods.
When prices are high, farmers sell their inventories and at the
same time increase effort in the next period to benefit from
higher prices. Starting with this storage model, Roberts and
Schlenker (2013) use an instrumental variables approach to esti-
mate the aggregate supply elasticity for four key commodities—
corn, wheat, rice, and soybeans—which are all storable. They
use the contemporaneous supply shock to identify the demand
equation, a known instrument since Wright (1928) introduced
the concept of instrumental variables. The new feature is that
past supply shocks can be used to instrument the futures price
and identify the supply function. They find statistically signif-
icant supply and demand elasticities, although both are fairly
small at 0.11 and —0.05, respectively, suggesting that shocks to
output will result in significant price changes. Two-thirds of any
food that is diverted to biofuels will hence come from new pro-
duction, while the remaining third will come from reductions
in demand.

Has warming already affected world production and prices?
Lobell et al. (2011) use the estimated elasticities to answer this
question. They perform a country-level analysis by merging
nationally averaged yields data for maize, rice, soybeans, and
wheat with crop maps and monthly temperature/precipitation
data. After linking production to weather, they predict output
under the observed climate and one that takes out observed tem-
perature and precipitation trends. They find that between 1980
and 2005, observed climate trends had already impacted crop
production compared to a counterfactual without the observed
trends, and that prices were 18% higher than what they would
have been without trends.

3. Conclusion

We have examined recent statistical studies linking agricul-
tural yields to weather fluctuations in a panel setting. We present
new evidence that these models, estimated using historic data
from 1950 to 2011 are very capable of predicting US aggregate
yields out-of-sample for the years 2012-2015. The single best
predictor is a measure of hot degree days that only counts for
how long and by how much temperatures exceed 29°C (84°F).
Aggregate production forecasts are the key variable needed to
predict changes in prices.

Statistical panel models hence give useful first-order effects
of predicted changes in climate, which already had a measurable
effect since 1980. We discussed whether adaptation can reduce
predicted losses in the future. Recent evidence finds cases of
adaptation, but the effects are limited in the United States where
the sensitivity to observed climate trends is roughly compara-
ble to annual weather fluctuations, although the former should
induce farmers to adapt much more. At this point, it seems
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more likely that the main adaptation is not occurring at current
growing areas, but rather through shifts in where crops are
grown. Future research on how growing areas might shift is
an active and important research field. If adaptation in current
growing areas or movements into new growing areas cannot
compensate the predicted production losses, prices will likely
rise significantly to bring demand and supply back into equi-
librium. This would likely benefit farmers, as the highly inelas-
tic demand and supply elasticities imply that price increases
more than offset production shortfalls. In a way, climate change
would “accomplish” what government programs designed to
limit supply have failed to achieve for decades. On the other
hand, consumers will have to pay the higher prices and hence
suffer a loss in surplus.
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